Kneser's conjecture, chromatic number, and homotopy

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hedetniemi’s Conjecture Via Alternating Chromatic Number

In an earlier paper, the present authors (2013) [1] introduced the alternating chromatic number for hypergraphs and used Tucker’s Lemma, an equivalent combinatorial version of the Borsuk-Ulam Theorem, to show that the alternating chromatic number is a lower bound for the chromatic number. In this paper, we determine the chromatic number of some families of graphs by specifying their alternating...

متن کامل

Hadwiger's conjecture for graphs with infinite chromatic number

We construct a connected graph H such that (1) χ(H) = ω; (2) Kω, the complete graph on ω points, is not a minor of H . Therefore Hadwiger’s conjecture does not hold for graphs with infinite coloring number. 1. Notation In this note we are only concerned with simple undirected graphs G = (V,E) where V is a set and E ⊆ P2(V ) where P2(V ) = { {x, y} : x, y ∈ V and x 6= y } . We also require that ...

متن کامل

“Chromatic ” homotopy theory

Homotopy theory deals with spaces of large but finite dimension. Chromatic homotopy theory is an organizing principle which is highly developed in the stable situation. 1. The Spanier-Whitehead category. We'll work with the category of finite polyhedra (or finite CW complexes) and homotopy classes of continuous maps between them. We will always fix a basepoint in all spaces, and assume that map...

متن کامل

The locating-chromatic number for Halin graphs

Let G be a connected graph. Let f be a proper k -coloring of G and Π = (R_1, R_2, . . . , R_k) bean ordered partition of V (G) into color classes. For any vertex v of G, define the color code c_Π(v) of v with respect to Π to be a k -tuple (d(v, R_1), d(v, R_2), . . . , d(v, R_k)), where d(v, R_i) is the min{d(v, x)|x ∈ R_i}. If distinct vertices have distinct color codes, then we call f a locat...

متن کامل

Packing chromatic number versus chromatic and clique number

The packing chromatic number χρ(G) of a graphG is the smallest integer k such that the vertex set of G can be partitioned into sets Vi, i ∈ [k], where each Vi is an i-packing. In this paper, we investigate for a given triple (a, b, c) of positive integers whether there exists a graph G such that ω(G) = a, χ(G) = b, and χρ(G) = c. If so, we say that (a, b, c) is realizable. It is proved that b =...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Combinatorial Theory, Series A

سال: 1978

ISSN: 0097-3165

DOI: 10.1016/0097-3165(78)90022-5